Skip to main content

Attribute subset selection

Attribute subset selection reduces the data set size by removing irrelevant or redundant attributes. It is used to find a minimum set of attributes which give probability distribution of the data classes result is as close as possible to the original distribution obtained using all attributes. 

It also helps to make the pattern easier to understand as it has minimum set of attributes.

Attribute subset selection techniques

Forward selection - starts with empty set and adding best set of attributes in subsequent steps

Backward elimination - starts with full set and eliminating worst set of attributes in further steps.

Decision tree - attributes that do not appear in the tree are assumed irrelevant.

Popular posts from this blog

Exercise 2 - Amdahl's Law

A programmer has parallelized 99% of a program, but there is no value in increasing the problem size, i.e., the program will always be run with the same problem size regardless of the number of processors or cores used. What is the expected speedup on 20 processors? Solution As per Amdahl's law, the speedup,  N - No of processors = 20 f - % of parallel operation = 99% = 1 / (1 - 0.99) + (0.99 / 20) = 1 / 0.01 + (0.99 / 20) = 16.807 The expected speedup on 20 processors is 16.807

Exercise 1 - Amdahl's Law

A programmer is given the job to write a program on a computer with processor having speedup factor 3.8 on 4 processors. He makes it 95% parallel and goes home dreaming of a big pay raise. Using Amdahl’s law, and assuming the problem size is the same as the serial version, and ignoring communication costs, what is the speedup factor that the programmer will get? Solution Speedup formula as per Amdahl's Law, N - no of processor = 4 f - % of parallel operation = 95% Speedup = 1 / (1 - 0.95) + (0.95/4) = 1 / 0.5 + (0.95/4) Speedup = 3.478 The programmer gets  3.478 as t he speedup factor.

Minor, Cofactor, Determinant, Adjoint & Inverse of a Matrix

Consider a matrix Minor of a Matrix I n the above matrix A, the minor of first element a 11  shall be Cofactor The Cofactor C ij  of an element a ij shall be When the sum of row number and column number is even, then Cofactor shall be positive, and for odd, Cofactor shall be negative. The determinant of an n x n matrix can be defined as the sum of multiplication of the first row element and their respective cofactors. Example, For a 2 x 2 matrix Cofactor C 11 = m 11 = | a 22 | = a 22  = 2 Determinant The determinant of A is  |A| = (3 x 2) - (1 x 1) = 5 Adjoint or Adjucate The Adjoint matrix of A , adjA is the transpose of its cofactor matrix. Inverse Matrix A matrix should be square matrix to have an inverse matrix and also its determinant should not be zero. The multiplication of matrix and its inverse shall be Identity matrix. The square matrix has no inverse is called Singular. Inv A = adjA / |A|           [ adjoint A / determ...