Skip to main content

Decision Tree Classification

 A decision tree is a flowchart-like tree structure. The topmost node in a tree is the root node. The each internal node (non-leaf node) denotes a test on an attribute and each branch represents an outcome of the test. The each leaf node (or terminal node) holds a class label.

Decision trees can handle multidimensional data. 

Some of the decision tree algorithms are Iterative Dichotomiser (ID3), C4.5 (a successor of ID3), Classification and Regression Trees (CART). Most algorithms for decision tree induction  follow a top-down approach. 

The tree starts with a training set of tuples and their associated class labels.

The algorithm is called with data partition, attribute list, and attribute selection method, where the data partition is the complete set of training tuples and their associated class labels.

The splitting criterion is determined by attribute selection method which indicates the splitting attribute that may be splitting point or splitting subset.

Attribute selection measures are also known as splitting rules as they determine how the data at a given node are to be split.

The attribute selection measure provides a ranking for each attribute. The attribute having the best score for the measure is chosen as the splitting attribute for the given tuples.

The popular attribute selection measures are information gain, gain ratio and Gini index.

Popular posts from this blog

Gaussian Elimination - Row reduction Algorithm

 Gaussian elimination is a method for solving matrix equations of the form, Ax=b.  This method is also known as the row reduction algorithm. Back  Substitution Solving the last equation for the variable and then work backward into the first equation to solve it.  The fundamental idea is to add multiples of one equation to the others in order to eliminate a variable and to continue this process until only one variable is left. Pivot row The row that is used to perform elimination of a variable from other rows is called the pivot row. Example: Solving a linear equation The augmented matrix for the above equation shall be The equation shall be solved using back substitution. The eliminating the first variable (x1) in the first row (Pivot row) by carrying out the row operation. As the second row become zero, the row will be shifted to bottom by carrying out partial pivoting. Now, the second variable (x2)  shall be eliminated by carrying out the row operation again. ...

Exercise 2 - Amdahl's Law

A programmer has parallelized 99% of a program, but there is no value in increasing the problem size, i.e., the program will always be run with the same problem size regardless of the number of processors or cores used. What is the expected speedup on 20 processors? Solution As per Amdahl's law, the speedup,  N - No of processors = 20 f - % of parallel operation = 99% = 1 / (1 - 0.99) + (0.99 / 20) = 1 / 0.01 + (0.99 / 20) = 16.807 The expected speedup on 20 processors is 16.807

Minor, Cofactor, Determinant, Adjoint & Inverse of a Matrix

Consider a matrix Minor of a Matrix I n the above matrix A, the minor of first element a 11  shall be Cofactor The Cofactor C ij  of an element a ij shall be When the sum of row number and column number is even, then Cofactor shall be positive, and for odd, Cofactor shall be negative. The determinant of an n x n matrix can be defined as the sum of multiplication of the first row element and their respective cofactors. Example, For a 2 x 2 matrix Cofactor C 11 = m 11 = | a 22 | = a 22  = 2 Determinant The determinant of A is  |A| = (3 x 2) - (1 x 1) = 5 Adjoint or Adjucate The Adjoint matrix of A , adjA is the transpose of its cofactor matrix. Inverse Matrix A matrix should be square matrix to have an inverse matrix and also its determinant should not be zero. The multiplication of matrix and its inverse shall be Identity matrix. The square matrix has no inverse is called Singular. Inv A = adjA / |A|           [ adjoint A / determ...