Skip to main content

Normalization or Standardization Process

The process of transforming the data to fall within a smaller or common range such as 0 to 1 is called Normalization or Standardization. Normalizing the data attempts to give all attributes an equal weight.

Data normalization methods

Min-max normalization

Min-max normalization performs a linear transformation on the original data. Min-max normalization maps a value of an attribute to new value range by computing,



where

minA - minimum value of an attribute

maxA - maximum value of an attribute

Min-max normalization preserves the relationships among the original data values.

z-score (zero-mean) normalization

The values for an attribute are normalized based on the mean and standard deviation of the attribute.





A variation of z-score normalization replaces the standard deviation of above equation by the mean absolute deviation of the attribute.

The mean absolute deviation sA, is




The z-score normalization using the mean absolute deviation is





Decimal scaling

This method normalizes by moving the decimal point of values of an attribute. The number of decimal points moved depends on the maximum absolute value of the attribute.




where 

j is the smallest integer such that 




Popular posts from this blog

Exercise 2 - Amdahl's Law

A programmer has parallelized 99% of a program, but there is no value in increasing the problem size, i.e., the program will always be run with the same problem size regardless of the number of processors or cores used. What is the expected speedup on 20 processors? Solution As per Amdahl's law, the speedup,  N - No of processors = 20 f - % of parallel operation = 99% = 1 / (1 - 0.99) + (0.99 / 20) = 1 / 0.01 + (0.99 / 20) = 16.807 The expected speedup on 20 processors is 16.807

Exercise 1 - Amdahl's Law

A programmer is given the job to write a program on a computer with processor having speedup factor 3.8 on 4 processors. He makes it 95% parallel and goes home dreaming of a big pay raise. Using Amdahl’s law, and assuming the problem size is the same as the serial version, and ignoring communication costs, what is the speedup factor that the programmer will get? Solution Speedup formula as per Amdahl's Law, N - no of processor = 4 f - % of parallel operation = 95% Speedup = 1 / (1 - 0.95) + (0.95/4) = 1 / 0.5 + (0.95/4) Speedup = 3.478 The programmer gets  3.478 as t he speedup factor.

Minor, Cofactor, Determinant, Adjoint & Inverse of a Matrix

Consider a matrix Minor of a Matrix I n the above matrix A, the minor of first element a 11  shall be Cofactor The Cofactor C ij  of an element a ij shall be When the sum of row number and column number is even, then Cofactor shall be positive, and for odd, Cofactor shall be negative. The determinant of an n x n matrix can be defined as the sum of multiplication of the first row element and their respective cofactors. Example, For a 2 x 2 matrix Cofactor C 11 = m 11 = | a 22 | = a 22  = 2 Determinant The determinant of A is  |A| = (3 x 2) - (1 x 1) = 5 Adjoint or Adjucate The Adjoint matrix of A , adjA is the transpose of its cofactor matrix. Inverse Matrix A matrix should be square matrix to have an inverse matrix and also its determinant should not be zero. The multiplication of matrix and its inverse shall be Identity matrix. The square matrix has no inverse is called Singular. Inv A = adjA / |A|           [ adjoint A / determ...