Skip to main content

Principal components analysis (PCA)

Principal components analysis (PCA) also known as K-L method searches for 'k' n-dimensional orthogonal vectors that can best be used to represent the data, where k is less than or equal to n. The original data are thus projected onto a much smaller space, resulting in dimensionality reduction.

Basic procedure of PCA

The input data are normalized so that each attribute falls within the same range to ensure that the attributes with large domains will not dominate attributes with smaller domains.

PCA computes k orthonormal vectors that provide a basis for the normalized input data. These are unit vectors that each point in a direction perpendicular to the others. These vectors are referred to as the principal components. The input data are a linear combination of the principal components.

The principal components are sorted in order of decreasing significance or strength. As the components are sorted in decreasing order of significance, the data size can be reduced by eliminating the weaker components.

PCA can be applied to ordered and unordered attributes, and can handle sparse data and skewed data. Multidimensional data of more than two dimensions can be handled by reducing the problem to two dimensions. PCA tends to be better at handling sparse data, whereas wavelet transforms are more suitable for data of high dimensionality.

Popular posts from this blog

Gaussian Elimination - Row reduction Algorithm

 Gaussian elimination is a method for solving matrix equations of the form, Ax=b.  This method is also known as the row reduction algorithm. Back  Substitution Solving the last equation for the variable and then work backward into the first equation to solve it.  The fundamental idea is to add multiples of one equation to the others in order to eliminate a variable and to continue this process until only one variable is left. Pivot row The row that is used to perform elimination of a variable from other rows is called the pivot row. Example: Solving a linear equation The augmented matrix for the above equation shall be The equation shall be solved using back substitution. The eliminating the first variable (x1) in the first row (Pivot row) by carrying out the row operation. As the second row become zero, the row will be shifted to bottom by carrying out partial pivoting. Now, the second variable (x2)  shall be eliminated by carrying out the row operation again. ...

Decision Tree - Gini Index

The Gini index is used in CART. The Gini index measures the impurity of the data set, where p i - probability that data in the data set, D belong to class, C i  and pi = |C i,D |/|D| There are 2 v - 2 possible ways to form two partitions of the data set, D based on a binary split on a attribute. Each of the possible binary splits of the attribute is considered. The subset that gives the minimum Gini index is selected as the splitting subset for discrete valued attribute. The degree of Gini index varies between 0 and 1. The value 0 denotes that all elements belong to a certain class or if there exists only one class, and the value 1 denotes that the elements are randomly distributed across various classes. A Gini Index of 0.5 denotes equally distributed elements into some classes. The Gini index is biased toward multivalued attributes and has difficulty when the number of classes is large.

Data Cleaning Process

Data cleaning attempt to fill in missing values, smooth out noise while identifying  outliers, and correct inconsistencies in the data. Data cleaning is performed as an iterative two-step process consisting of discrepancy detection and data transformation. The missing values of the attribute can be addressed by Ignoring the value filling the value manually Using global constant to fill the value Using a measure of central tendency (mean or median) of value Using attribute mean or median belonging to same class Using the most probable value Noise is a random error or variance in a measured variable. The noisy data can be smoothened using following techniques. Binning methods smooth a sorted data value by consulting the nearby values around it. smoothing by bin means - each  value in a bin is replaced by the mean value of the bin. smoothing by bin medians - each bin value  is replaced by the bin median smoothing by bin boundaries - the minimum and maximum values in a ...