Skip to main content

Amortized analysis

An amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. It guarantees the average performance of each operation in the worst case.

The asymptotic analysis gives worst case analysis of each operation without taking the effect of one operation on the other, whereas amortized analysis focuses on a sequence of operations, an interplay between operations, and thus yielding an analysis which is precise and depicts a micro-level analysis.

Three most common techniques used are aggregate analysis, accounting method and potential method.

The aggregate method, in which the total running time for a sequence of operations is analyzed.

The accounting (or banker's) method, in which an extra charge would be imposed on inexpensive operations and use it to pay for expensive operations later on.

The potential (or physicist's) method, in which a potential function would be derived characterizing the amount of extra work that can be done in each step. This potential either increases or decreases with each successive operation, but cannot be negative.

Popular posts from this blog

Exercise 2 - Amdahl's Law

A programmer has parallelized 99% of a program, but there is no value in increasing the problem size, i.e., the program will always be run with the same problem size regardless of the number of processors or cores used. What is the expected speedup on 20 processors? Solution As per Amdahl's law, the speedup,  N - No of processors = 20 f - % of parallel operation = 99% = 1 / (1 - 0.99) + (0.99 / 20) = 1 / 0.01 + (0.99 / 20) = 16.807 The expected speedup on 20 processors is 16.807

Gaussian Elimination - Row reduction Algorithm

 Gaussian elimination is a method for solving matrix equations of the form, Ax=b.  This method is also known as the row reduction algorithm. Back  Substitution Solving the last equation for the variable and then work backward into the first equation to solve it.  The fundamental idea is to add multiples of one equation to the others in order to eliminate a variable and to continue this process until only one variable is left. Pivot row The row that is used to perform elimination of a variable from other rows is called the pivot row. Example: Solving a linear equation The augmented matrix for the above equation shall be The equation shall be solved using back substitution. The eliminating the first variable (x1) in the first row (Pivot row) by carrying out the row operation. As the second row become zero, the row will be shifted to bottom by carrying out partial pivoting. Now, the second variable (x2)  shall be eliminated by carrying out the row operation again. ...

Decision Tree Scalability Methods

 The scalable decision tree induction methods are RainForest and BOAT. RainForest method maintains an AVC set for each attribute at each node. AVC stands for Attribute Value Classlabel. BOAT , stands for Bootstrapped Optimistic Algorithm for Tree construction, uses a statistical technique known as bootstrapping., by which several smaller subsets are created. The several trees are created using the subsets and finally the full tree is generated using the trees created by smaller subsets. BOAT was found to be two to three times faster than RainForest.